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Consider a randomized block design where the errors are correlated

within a block but are independent from block to block. The theory for

testing the significance of the treatment effects was done by Box (1954]

and Geisser and Greenhouse (1958], and a partial solution was given by

Graybill [1954]. A more general solution to this problem is now presented

and several test procedures are derived.

The variance-covariance matrix for the above design can have two

forms. When the correlation coefficient, pi, differs from block to block,

an exact test of •.duced dimension is proposed which can be used in solving

problems in growth studies. When p is identical to p for each block,

two tests are presented. One is exact when p is known; both are approxi-

mate when p is unknown. In this latter case, comparisons are made between

the two tests using a specified form for the covariance matrix and esti-

mating p . For this example a Satterthwaite test is most accurate; but,

the usual F-test, which ignores the correlation, performs well when IjI

varies somewhat from zero.
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CHAPTER I

INIT RODUCT iON

A basic assumption in the nodel for a randomized block desigi (OD)

having t treatrents aAd b biockb is that the errors are normally and

independently distributed. The physical nature of scom experimental

situations, however, offers considerable doubt as to the validity of this

assumption of independent errors. Data occur in cases where therw is no

possibility of introducing randomization because the factor to be studied

is the effect of time or position. Box [ 19 5 4 a, 19 5 4 b] and Geisser and

Greenhouse (1958] have shown that these correlated errors can seriously

affect the probability of the Type I error of certa-in tests of hypothesis

from the standard Analysis of Variance.

Correlated errors are particularly prevalent .4ien repeated measure-

ments are made on one experimental unit (e.g., growth curves); in general,

when randomization of exoerimental units to treatawit le-els is restricted.

In sow cases, correct tests on Lhe significance o. treatment contrasts

have been achieved throuqh insight as Yates fi1)37] (theor, for this type

of solution can be foumd in Chakrabarti [19621 p. 62 ff), or through the

use of Hotelling's T2 test (19311 (if L > t), but no gerwral approach has

been given.

The purpoze 01: this paper is to give s8ci exact and approximate

critericns for testing the effects oi independent sets of tratmant contrasts

in a MRD ihen the errors -Are correlated within a h..,:ck but are independent
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from block to block. For testing the equality of all the treatment means,

2
Graybill 119541 has given an exact test using Hotelling's T . But this

is useful only when b > t and the covariance matrix is the same within

each block; it also involves considerable computation when t is large.

The applied statistician, however, is sometimes confronted with the case

where b < t, or situations where adequate means are not arailable for

computing large-order inverses. He might even be interested , a speci-

fied set of treatment comparisons. It is these areas that are to be

studied in thip work.

Cases are considered wher- the correlations within a block are a

.unction of a single unknown parameter, pi# and the structure of the

covariance matrix is the same within each block. The problem is then

approached from two avenues (which in some cases may lead to the save

solution):

1) Br-ak down the variance--covariance matrix irto an additive

de-iomposition as illumtrated by Good (1969) where the cor-

relation coefficient within a block is dominant in only a

few multipliers. Transformations orthogonal to their cor-

respording vectors would lead to less 'usually zero) corre-

lated data. Yates' (19371 solution is essentially this;

where o is the multiplier of onli one additive Lv-mponent

(in fact, this is a latent root and vector of the covariance

matrix).

2) When . i-s identical to o for each block, make an exact

F-test if i is known. Otherwise, estimate the unknown

corrnl.ltton parawter, and thrcough this make an approximate

F-test. A qclution sxmilar *o Satterthwaite (1946] would

r-sult whenr this is substitutei into Box's theory.



An example with a common form of the covariance matrix will be con-

sidered for both the above. In the latter case, a Monte "arlo study will

be made comparing the exact test with the approximate one using this example. j
An easily computed estimate for p will also be qiven.

i
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CHAPTER II

THE C-?.2THOD

Ctonsider a class of randomized block designs wlth b blocks and

t treatments and let Yij be the observation in the jth block on the ith

treatment. Assume that Y.. may be represented by a linear model1)

Yij + T+ j + $ . , i = +, . , t; j = 1, .' , b

where p is the grand mean, T. reflects te fixed effect of the ith treat-
t

ment sub'ect to the condition T r. = 0, 0. reflects the effect of thei=l

jth block, and F_. reflects the error effect. Alternatively, denote che

model for all the elements of the jth block by

Y= (1 + )l T +_ , j1, ,b (1)

where

" Y ' Y2 "" Ytj

V i = (1, 1, '', 1)

,= (t, T, ' T, t)- 1 2t

C' E2j' " 'tj)

It is also assumed that

N (0, , independently, 1, ,b ()
)

where 0 is the null vector and tj is the ,ariance-covariance matrix 3f F.J

4
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Suppose it is desired to test the significance of the treatment

effects in the model of (1). While no exact test exists that is applic-

able in all cases for an unknown S, it is possible to find an exact

method for testing certain sets of treatment contrasts provided S is

of a special form. Put information on other sets may not be attainable,

and the test statistics for these sets will usually be correlated. So

the overall power of the test is often reduced. Such a loss, however,

might be tolerated at times in order to avoid cumbersome approximations

and difficult computations.

Consider a covariance matrix that can be expressed as

= 2

tj (It+p.M) , j , oM) , b (3)
) J

2.
where a and pj are unknown constants and M is a known matrix, t x t, with

zeros along its diaclonal, I.e., all the Yj5's have equal variances. It

is assumed that Sj is positive definite. If j has the form

= a(It + M0 + P. M)

it can be transformed to

j (I +P M*)J 0j

as in (3), where 14 L' LL' =1i LM0 i
,L -• 0, 2' = I !4' * • Pd if

M C? + M(p )]
tj t j

i.e., if M is a function of pi, express •. as

2 2
j (It +jM 1+ + pM 2 + .. )
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Then it might be possible to use

-*CT (I + P Ml)
"") t

as an approximation for since powers of pj greater than one may be

negligible.

Assuming Sj has the form in (3) when using the RED of (1), in

general, greatly restricts the randomization of treatments to blocks.

In fact the treatxents must be positioned in a certain order in each

block so as to guarantee that the errors within a block are properly

correlated, unless the correlation is related to the treatments rather

than the plots, e.g., see Geisser and Greenhouse [1958]. At tines,

however, the treatments in certain sets, e .g., the odd-nuubered treat-

ments, can be randomly assigned to certain plots, e .g., the odd-nuubered

plots. The example at the end of this chapter will better illustrate

this idea.

With the j given in (3), it can be shown that there exists a

matrix, C, t x q, of rank q such that

C'MC = 4 C'C =I (4)q

i.e.,

C'tijC = 2 1q

By transforming Y to KY. = Z. the design matrix becomes one in which the-J -)

erýrors are independently and normally distributed. This transformation

then leads to the necessary statistic for testing the hypothesis:

H K i 0
0 - -

(5)
vs H: K T 0

a - .-

4i



where

C1 - c0l[l'cC'l]- 11'cc' ' ,' o (

Notice in (6) that when C'l 9 02, C must bit adjusted for the effects of

C'1 . The initial problem then is one of choosing the appropriate matrix,

C. Although the following approach has many good properties, there is

no unique way of constructing C.

Using the technique illustrated by Good (1969], it is possible to

break down M into an additive decoMosition, i.e.,

t

i,,I

where X is a latent root and a is the corresponding orthonormal latent

vector of M. Since $ has equal variances, M has zeroes along its diagonal

and the trace of M is zero, i.e., the sum of the X is zero. Therefore,

there exists at least one negative root. Consider pairing each of these

negative rcots, say Xk' with a positive root, say X,, to form the separate

ratios

and let p be the number of these pairs of nrgative-positive roots. It is

suggeste- that Ak and X be choser 1 such a manner that RkL is an close

to one at• iossible. Re-label the k, so that R is the smallest ratio,

R2 is the next smallest ratio, " , and Rp is the largest ratio. Now

construct the orthonormal vectors

ii
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1

y- (+ v (s, + R , v 1, il) p (9)

where and %. are the latent vectors corresponding to the roots, l and

SP in R . There is at least one of these vectors since there is at

least one pair of posidive-negative roots. At the most there are as many

such vectors as one-half the rank of M (if the rank of M is even), i.e.,

there are as many such vrectors as there are possible ratios, R . Each

vector, kv, is a colunn of C.

It is important to realize the limitations and assets of the above

method of construction. If M is non-singular and C'I 0 0, then C will

be useless unless M has more than one pair of positive-negative roots,

for one such pair leavas no degrees of freedom in testing the hypothesis

of (5). When M is singular, there are no restrictions as C can be aug-

mented by those latent vectors, c-i' orthogonal to M. Necessarily the a

will be orthogonal to the B . Then the columns of C consist of the-V

cmnstructed vectors, a , of (9), and tA.' latent vectors, -i orthogonal

ti M, i.e.,

C - [1, t2' "" ' -pji's orthogonal to M] (10)

Hence,

t - , if r - rank (W) is even2
q <

r+ 1
t if r - rank (M) is odd2

To show that th4, conditions of (4) hold, let the volunms of C

equal yc, c 1, , q. Then
-C[
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. y- .' from (7) and (9)0 C 71 c'

so that

CdC I

q

Also,

Est j k 02q

44~ 2f 
Ic -

Y''

.c 0 ifc C -

so that

0 P for all c, c'

t~here fore, 
CM

and

Recall that in conastructinq C, the ratios Rv were chosen to be as

close to one as possible. This vas done for sevral reasons. If saw Rv

equal one, it is possible to construct a sec'•l'd aariz, C , orthogon 1

to C1 = C, which satusfies the conditions of (4), i.e.,

Ci'ci = , Cc -I , i-, 2

and

Cic o , i IJ i,j-l,2 1(1)
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Then two sets of contrazts as given in (5) can be tested instead of one,

and more degrees of freedom are involved in the test. The colums of CI

are the same as in C, replacing t, k, v, q, and Rvby -1' kl, vlo ql' and

I R . The colums of C2 are the orthonormal vectors

" - "% ,v2-, f .. ,q2 (12)

"72 12- -L2  L 2 2

where 42 and k2 correspond to the roots, AL2 and Xk2, in 2R, i.e.R

R12,k2, which represents the ratios, Rv, that equal one; and q2 is the

number of these ratios identical to one. Hence, the rank of C1 is ql' i.e.,

q, and the rank of C2 is q 2 " If C21 #i 0, then q2 must exceed one or

there will be no degrees of freedom avijlable for testing the hypothesis

of (5); and the restrictions that held for C can be applied to C 1 .

Note that condition (4) holds using C, since C1 - C. For C2 the

columna vectors, 6 v2, are orthonormal so that C C2 - Iq2 and

ýV'ýv ('L2i2 21 2 2(t

-v 2 -v 2  2 -t k2 k 2  - 2

=0

since the a-i are orthonormal and X -A Thus, C "C2 - 4 and con-
1 2 k2  22

dition (4) follows. Further, since 2Rv2 - 1. -v1  0, so that2 -2v2 -v

Cl'.2C Hence, all conditions are satisfied and C, and C2 can be used

to test the hypothesis of the nature of (5).

For the ratios, R , unequal to one it is possible to construct a
v

third matrix, C*, with the properties that3
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1 ~ , 2

and

C" C' -diagqa ) , =,. q3 3a3

where av3 is some constant greater than zero and q3 is the number of ratios,

R , not equal to one. The colmrns of C* are the orthonormal vectors
v 3

3__v3_ -2

3 1 + 2 ( 3 -( - 3" ck1 v-i,... ,3q 3  (13)

where ci and a are the latent vectors corresponding to the latentande 3 ,o R ,k3.

roots, XL3 and xk3' of 3Rv3, i.e., *3,k3F which represents the ratios,

RV , that are unequal to one. The rank of C* is q3 and the same restriction

hold for q 3 as did for q2 when C!'!I 0 . Notice noý that

R2
3 v3 L -1 -

v3 R2  ( 3 v3 -k 3  i iaii -43  3 v 3  3

ft23 v 3  IxR-1 a R-
1+ R S3 3  3 V3  k3-k 3  -L 3  3 v3̀ k3 l

3v3

3 v3

R2
3v 3  -2t

R2
V v 3

3 V3

" - +' f,2[f~ ' 1
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P2
Sk 31 3V3

R2 is near ome, or A is near
v 3 is !pproximat ly zero when 3 v3 k3

zero. This implies that in the•e cases

so that

C 2 q 3 +Pj diag(a ]

.2
"* q 3

So if the a are small, C*'MC* is near the null matrix, and it might
V3  3 3

prove feasible to ignore these contrasts. Then C* could be used along

with C1 , or C1 and C2 , to form another set of contrasts orthogonal to the

others. It is easy to -"mrify that the conditions of (4) hold with this

approximation.

If the a vary greatly so thatCI'C is not near f it would be
v3 3 3

advantageous to examine this matrix using the first method developed above.

Let

M - C'MC - diag(a ) , I 1, q ,

3 3 v3 33

so that

SJq' ,(I 0 N ')

I q3

3 .5 3

A matrix, C4 , similar to C is sought. First, notice that the av3 are

latent roots of the diagonal matrix MV . And if R is near one,

3 tf
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R2 - 1 might be negative or positive implying that there might be a
3

3v 3

negative and positive a If this is true there is a matrix, C4 , that
V 3

4'ta

can be constructed with colums similar Lo the vectors of (9). Now the

ratios, R, are formd using the a 's, and the Ca. are uiit vectors, i.e.,
V V3  -

the latent vectors of M* . Letting

C C*C
3 3•4

it follows from previous results that

CM3 3C;; 33 I

and

C'C - , i i,2

t2
Aloo, C;'MC! is nonsingular, as a V 0 except when R 2 1, and this is

3 3 3 3v 3

not possible by the manner in which C' was constructed. Therefore, C"'C*3 3 "-3

must have at least twn Iai. of negative-positive a or the matrix, C3 ,
V 3  3

will. be useless since there will be no degrees of freedom available for

testing the hypothesis of (5), based on u. Of course, this restriction

does not hold if C;1 - 0 .

H-jnce, it has been shown that by keeping the R near one there mayV

exist as many as three orthogonal matrices, C,, C C3 , or CI, C2, C*, with

the properties that

C' SC, i 1, 2, 3

S, i U'
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so that

c 1tc. -•2i , i- 1, 2, 3

In terms of tests of hypotheses this means that three different sets of

contrasts can be examined instead of one. However, C[j~C• is not

necessarily zero except when i - 2 and k - 3, so these sets will generally

not be independent. The result is several depen&,,. tests.

To derive the tast statistics for the hypothesis of (5), using the

above matrices, recall the model given in (1), i.c.,

Y. L + 5.) + •,+ £. , j = 1,. - , b

where

Y. -. N tE(Y.), ±.] independently
S -J t -1 J

Transform Y. to KY. Z. using the matrix, K, given in (6). Since K1 is-J -J -

O, Z. is given by

-- J --- :
S =KY. K= 4-• K-, (14)

with

",(41

Sth at, f!2 .
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" C'C
l'Cc' 1

there fore,

SI C'1 1 0q - -XXI ' - C' I C(1$)

•i q ,'CC#,"

Since the Y are i.i.d. normal vatiates, it follows that

Zj 'Nt(KT, 2KK'), independently , J-y, ..

therefore,
b

12

Consider the q adratic form

SST *bi-i

-bY'KKY(8

bwh re • tI "SS
bhry - From (1)i olw ht- is ditiue an

a dci-aquare since KK' is idempotent, i.e.,

S-T ' (19)

where

d "tr(W•K)

t trI , CI Of 0

tr'I q} t , 4_•O
S\I°C•'
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tlq C, 1 0
•, (20)

q-1 ,C'1 7 0

Also,

b F )

E

b K'K

2c

The K- are a set of ind&nendent contrasts in T since the rows of K are

mutually orthogonal and Ki = 0 It will be shown ..iow that there exists

a test statistic for testing the hypothesis

10: X 0)
(21)

vs Ha: a 0

But this is equivalent to the hypothesis of (5), i.e.,

H :K: = 0H: KT
VSIa - -

vs H: KT 0
a -

or,

H: k = 0 id,' ,d

oI -1k' 0

where the k. are linear combinations of the rows of K and are mutually-1

orthogonal, or, these vectors are the basis fcr the vector space of K and

arc orthogonal to 1

The results of iaippendix A will now be used in deriving the test

stý.atistic ftr (21) given hy



1-/

F MST (22)
MSE

with

1
MST = - SST

d
I YItd Y1 t(A) - (23)

where Qt (A) is given in (AI), A = K'K, and

Y- = fy-i' "'".

and

1
MSE = SSE(b-l) d

(b1 Y'Q(A)Y (24)
(b-1) d

where Q(A) is given in (A2) and A is the same as above. Recall that it

was assumed in (1) that

y_ . Nt[E(Y), E) , Z = diag($j)

SSE 1
So-SE is distributed as a chi-square if Q(A)E is idempotent. Now

so -

.4 A = K'14 .K'K

= a2A , from (16) (25)

and this result with that of (A4) implies that

iQ (A) = Q (A)E

Hence,

SSE X 2 (26)
2 e

C,



where

e t r [,k (A)j

b
=- (b-1) f tr(K4.), from (A5),2 bGj=l

= (b-l)tr(K'K), as tj a K

(b-I)d, from (20)

and

X 0, from (A7)e

since

-J

Therefore,

and from (19)

SST 2
(T2 Xds0)

if Ho of (21) is true. Further; SSE and SST are independent since (A.
SST SSE

and (25) imply that Qt(A)I]Q(A) . Therefore, - and -- are indep. :nt
- c, 2  aT2

chi-squares and their ratio div.'LI( ty rheir iespective degrees of fr edom

yield

MSTF sF - , (bF-1) 6

if 1o is true. And the hypothesis given in (5) can be tested using the

above result.
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In cases wh3re there are two orthogonal matrices, C1 and C2 , ful-

filling the condition& of (4), the above argument can again be used on

each Ci . The only difference is that the variables of C are now sub-

scripted. This results in two non-centrality parameters,

b

i b -2 T'KjKI , with K, based on C1
2a-il ,

and

I rlv , with K based on C
2 .2- 2 1 - 2 2

which lead to two dependent tests, one on X1 and one on 2 The hypoth-

eses are:

I i XI = 0 and H0: A2 = 0
vs HI1 xi 0 vs HI2 A 2 5 0

(27)
or, HO: KIt- = 0 and H:02 K 2t= 0

vs HI11 KIT- 9 0 vs H 1: K2-L 0

The test statistics are

MST 1
! = M E-- • % F d , (b l d ] ' if H O is tr ue

and

F =- MS-% F if H is true
2 ME2 (d 2,(b-l)d 2I 02

where d and d2 are similar to d, i.e.,

d 2
ql , c{! =O

q2 2 1 C2 .•0
d 2 .q 2 0
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and SST 1, SSE 1 , and SST2 , SSE2, are similar to SST, SSEj here K is

replaced by K1 and K2 , respectively, i.e.,

1.1ST 1 ISd

2 d 2
2

MSTd YQ(A )Y A S

MS1  b- 1 1- A KK
1

MSE Y-'Q-A)Y A2 (b-l)d -Q( )•- 2 A- " K2Y22

As would be expected, the results proved for C hold in the cases of C1

and C2 since only a label has been changed. But MST 1 and MST 2 are not

independent since

KK it y 2

i.e.,

Ci C 2 #

and MSEI and MSE2 are not independent since

Q(A1 )EQ(A 2) 0 4'

i.e.,

Therefore, F and F2 are not independent. However, these are marginally

"axact tests under H01 and H02 and each can be individually tested.

This analogy can be further extended to cases where there exist

three matrices, C1, C2 , C3 . The argument is the sam only there will be

three hypotheses:
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H : 0 based on K us L C
01 1im 1s

H 2 basedonK 2 uK g C2H02: 12 0, 2us'

and H03: A3X 3 , based on K. uting t3

The test statiutics are F, i -1, 2, 3, w.iere

KSTj

P MST-i [d% (b,1)d], if HO. is true , i - 1, 2, 3

and

MT. I SST , Uing Ki
I d ii

ME, - 1 Y'Q(A 1 )' A, K'Ki

and
q , c_ 0

d . Ii

-q , -1 cjj p 0

Notice that F1 aad F2 are dependent tests as are F and F3 since

citi 0 , i - 2, 3

But F2 and F3 are independent tests since

3 3

# a.,Cit jC;.

This is expected since F2 and F3 are functious of entirely different -

whidh are mutually orthogonal, while FI has a, ' in coin with F2 nvi

F3 . Thus, the result is three marginally exact tests of whidc two axo

dep-ndmt.

Aw•itional tests of single •1•grees of freedm may exist provided

the ar* identical, i. - ,or P- o. The resulting contrasts

Ij
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can be constructed to be orthogonal to one another and to any of the

above sets. Unfortunately, these tests are dependent on the others. The

hypothesis to consider has the form:

"H k: a a =- -0- , k 1,. .. , d' (28)

where the ak are a set of orthonormal vectors such that

I 0 ; a. i= 0' , 1 1, 2, 3; k = 1, . d

Also,

3
d'- - 1 - d

where

d. , .: tice matrix C. is ustFd

10 , othr•v ,ise

.hen the a'T aic. A set nf indkp-ndent contrasts and

-'-k-

is true

-K-

the , , n. vaz iat ,
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and

2 -2 2/2
Now it is well known that if x- !(., a ), then n x 2 '-0 aMd

-2 2

(x.- x ' (0) independently. So it follows that2 n- I
a i- i

"SST;' "

a~k 'A ak'

whe re

1 2
- (a,' )2
2k .2 K

and )
S(a,' y .--a - 2

-,-a~l!-• a - ,-[

-K' 
-K

2
b (0)

Hence, the test statistic for testing

H' " •
Ok k

ii ': a-'k

vs give by

H' "a,': C
• Ok" _k-

"H'_T1k

is given by

K

,1 1 , T' is true (29)

Stnce arc d -ct, are not d ,_-Ieariy e.qual to ther nulls mtrix, these

tests are dependent, as w~-~ud ~'O ex-.ed.-. Further, usinqi the'se single
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degree of freedom tests with the tests based on the Ci , i - 1, 2, 3,

leads to sets of contrasts using a maximum number of degrees of freedom.

The combined set spans the parameter space of T and has a total rank of

t - 1, as this space is restricted by the fact that T'l - 0 . But it is

desired that the contrasts obtained using only C1 , C2 , and C3 span this

space as there would be fewer dependent tests and, hence, an increase in

the overall power using this approach besides not needing p M p, for all

J

Tn summ'a'., it has been shown that, depending on the form of the

matrix, M, there may exist as many as three matrices, CI, C2 , C3 , but no

fewer than one, C1 , with the properties that

CIC . cci - , i - 1, 2, 3qi

and

C' C- , i 0 J, i,j - 1, 2, 3

These matrices can be used to test hypothesis of the form given in (5), and

the derived test stati.Lics have exact distributions, i.e., the F-disfri-

bution is used. Vectors have also been shown to exist which can be used

in testing hypotheses of the form given in (28)1 likewise, these tests are

exact. Finally the sets of contrasts formed when j • will span the

space of r and have a total rank equal to t - 1

The above tests, unfortunately, were shown to be dependent as was

expected, due to the form of tJ But each individual test is exact and

if any hypothesis happens to be of interest, it can be easily tested at

the required a-significance level with the use of a set of F tables. The

actual sets of contrasts that can be analyzed will be determined by the

Forr. of X. "eto the dependency of the resulting statistics, a joint test
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si-4n'ficance using all the sets is not known. Such a test would have

an u-level which would be quite difficult to compute. but bounds may

exist and this fact needs further invu-;tigation (this will not be done

here). For the individual tests r-t.ere is an obvious loss in power; but,

if b is large, this might not be too notic.-able.

It is of interest to oint out that. the de&rendenc, aho-e can partially

be eliminated, but ther is a sacri fice -f the t2ower of the test. To do

t: is it is necessar.r L m. ke a rarn formation cf the form (C can al-o be
3

added)

-- I

This might increase th- de,; -os of freedom in MST, which is forted by

pooling MST and MST2 (now irnd,_pe. >nt) but a good deal of the information

on Y would be ignored. Also, "he degrees of Freedom for ktE, formed by

pooling MSE, and M.SE2 (which are also independent) could be reduced by as

1
m1-- as . The procedure here would be sime&Jar to the previous one. If

b were large this ,vthod could be tsd with much success but in general

it has little value and thus w).li :ct be anidv-zed.

As a fijnal tzojnt rcý:0l1 th.V -t !-%oht not -e Possible to construct

more than the one mitrix, - n thi.s c, t"-ere is only -cie test,

other than thea since, At-4:r o-f frthor,,: !.vt- w require Ite otnr•-e

idenitical. ~Honce, in this -asgc thor- - n-o ni'id- tc. cot.-ider rolm

ofl 4dependen-cy
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To understand more fully the advantages of the method just derived,

it will be_ helpful to analyze an example. Consider a randomized block

experiment which uses the -v;del in (1) and has a variance-covariance

matrix of the form

. 2 (1 + PjM) 1j 1, , b

"I. p. -

- IJ 3. "

-~ (30)

so that

•

(31)

.1

i 0

Such a covariance matrix could occur in growth studies where the treat-

.nents are applied to each individual at specified times. For I

time periods one would expect a cer-tain correlation between error effects;

but, as tire passes and other treatnwints are applied, there should be

little or rno -',)rrelation between th.•, for•-!t and these latter errors. Hence,

the order tn which trre_,4....s are oivtn to an iniividual is not as restricted

as - Ar,, asef is .voJt -••-t. AJrowt••n z-r-vi the treatment effects

de rr'ae w~tn -c tat tv;-'- VU~I; mig .iht be

%S I 7 I



Also, under these circumstances, p usually varies from individual to

individual io it is correct in using a different value for each person.

Note that p the serial correlation between experimental units in

the same block, is restricted by the condition that

0 1 2 cos( (32)

which guarantees that F will be Fosit-:v definite. T•he eigenroots and

eigenvectors of M are given by Andi.rson '1948] as

tr. t

-i d 
(34)

V'L

Isi

ii

whe re

t

i. ---- n

k".

Notice. that

•'Li (0 whentisoddf

Nhett is eventti~i.!0 ,•,n is dd I

• i whe t i evI
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Also,

X 2 coo l

- - (t+i-i) )--2 coo •

= Xt+ l-i

so when t is even each eigenroot can be matched witl) the negative of

another, implying that

S# t

R = 1 V= 1, 2, 2
V 2

And M is nonsingular. When t = odd, M becomes singular so that

t-l
R = 1 . v 1, 2, .. ,-

and there remains one extra latent root corresponding to the latent vector,

say c-(t+] 2 I orthogonal to M . Hence, it is possible to conftruct the

two matrices, C1 and C2 , which were defined earlier. Since all the Rv's

are identical to one, there can be no C3 matrix, as its construction

requires ratios that are nct equal to one.

The columns of C1 are given by

. 2, I _ al- + u_+_ ), V1 v 1:, *...
-V 1  (2 iv -t+l-v1 ),viP

where

t
T , if t is even

ifi 

t-i
2 ' if t is odd
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Therefore,

*' ", t even(
Cl - 135

it,' " -(t-l)/2, -(t+l)/2] t odd

Likewise, the columns of C2 , are given by

6 = (- -_t ) , V 1,...,

v2  r2 -v 2  =t+l-v 2  22

where

if t is even

ii T 21 if t is odd

so that

S[2= [6 " 6 2 (36)2 -q2-

Then

(t
y , if t is even

ql= Rank (CI) =

2 if t is odd

and

I if t is even

q2= Rank (2
2- fti d

Together C and C2 span the vector space of .14, with C1 containing the

vector of the null space when M is singulir; thus, there is no C3 matrix.

Although it would now be an easy task to derive K1 and K2 and,

hence, the F-statistic., this will not be done. Trial and error has
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revealed that it is not necessary to recompute C1 and C2 using (35) and

(36) each time t changes in value. Since the Ci'I are not unique, there

is no loss in generality in using the bases of the vector spaces spanned

by the colunus of the C is as the columns of the Ci s. The rsult is a

patterned matrix for C1 and C2 which holds in all cases, i.e.,

"o o o 0 : ...
0 0 1 0 0 ... 0

0 0 0 0 1 ... 0
C' = , c~i,1 o (37)

o 0 0 0 0 ..

and

0 1 0 0 0 0 . 0

0 0 1 0 0 ... 0

0 0 0 0 1 ... 0
CO ,ci .ý! (38)2 ....... .

-0 0 0 0 0 0 . ,

Notice that the rows of C1 and C2 are orthogonal so that

CC= qi

and the conditions of (4) hold so that

CMC. = , i = 1, 21 1

therefore,

C'.C = I , i =1, 2
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The formula in (6) then yields

"q1-1 o -1 0 .. i

-1 0 q1-1 0

-1 0 -I 0 (39)
K1 KI* . . . . .

-L 0 -1 0 0

and

"0 q2 -1 0 -1
0 -1 0 q 2- 1 "

o -1 0 -1(40)

2 q .2.

L 0 .- i 0 - 1 •

so that

"q1 -1 0 -1 0 -1

0 0 0 0 0 ..i

0q-1 0(41)
A, K =Kl 0 0 0 0 0 ,

-1 0 -1 0 q 1 -"

and

o 0 0 0 0 ..

0 qo-1 0 -1 0

0 0 0 0 0
A = 'K =e.*I(42)

A2 2;K2 q 20 -1 0 q 2 -l1 0

0 0 0 0 0 ...

L/
o 9 o o o *-.

* 9 9 9 9 I



32

It is obvious from (41) that SST 1 is

SST, bY.KIKYql2

1 ( 11-1#"- • (12--.. - ms.1))

where

1 b ql b

9 bq 1 £~£ 21-j'21-, b 1 l~

and from (42), SST2 is

SST2 =bY K'ýK y
2 .,22-2

-b y (2), -iil

where

ý(2) 1 b q2  
1 b

2 __ I I 2i,j Y2i, 2 j1 2,j

Also,

SF• b 1 (y2i-lj Y2i-i2 - -(1 (
j=1 i=1

where
q,

Y~ 1 q = Y 2i-l,j"J q1 i~

and

b --() (44)

SS2 2iA 12i,- - j
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Y. Y2'

It now ljýcumrss an Ža'ta--4 to test separately the two iv.'Potheses:

H 31 K11 f

lij K r 2

1U7.'ir~u ( 39) and !4ý11 .ijd r-214.ting this prrLlcrm to growth Stualt -', these

01' '~3 q* -I

I [ T -1
11 3 a1

and

02 1 2-

02 2 4

If, ]h.,'-v-', tt-.e i"ci nature. of the orobleinalm tux randomi-

zation, Ord~er f-tetcrt~ rom I t") i to to,-.!. thox ordering of

the plot~s in o block so th-At +T 1-is u'e form in (30fl. The udd-nwnbtered

t reatnrmU-t: I. f~:&' 3Lzaw to t~i:( odd-nuxrrbýrecl plots; likewise,

U.~ cn-rrn~vrejtro.e -n lt.,(:i rundumi ass'cjnecl to tr. 'crn-rumbered

y, Io-s . 'Yhwt :; lect tl~ŽiiLL in two p'rarU; one contai nin tht. observa-

t L )It ' t 'I.-. J t±tXiuei~t~s jiko oine ri~ u~Icvt~



34

for each set of data using SST 1 , SSE 1 , SST 2 , and SSE 2 * Finally calculate

the test statistics

SST 
1FI - (b-i)-

1SSE 
1

and
SST 

2F2 - (b-i)-

2 SSE 2

To test H0 1 compare F1 with a tabled F (ql-l, (b-1) (ql l)I at bow m-level

of significance, t- test H102 compare F2 with a tabled F q2 -_,(b-l)(q 2 -l)J

at an a-level of significance.

As an example of this result consider the case where t - 8 . Then

F 10 0 0 0 0 0 01

0 i0 1 0 0 o1o 0j

o o0o 0 o 0 o

and

0 0 0 0 0 0 0C20 0 0 0 0 0 1 0

0 40 0 0 0 0

so that

q l, 4 , q 2 --2 4
2 , 2

and

r 2 0 -1 0 o

KK 1 0 0 0 K- 2 0 1
1 4 1 0 2 0212 0 0 0

01 0 2 1at- 0 0]
Lo oo J -
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Then

4

SST1  b ~(2-,

and

ssE1  j[mi iJ1 ( 2 - - j2i-,. - + ..
j-1 1m

Also,

4 2
SST bill( ,"

and

b 4 -(2) 2
SSE 2  2i,j "2,. .j + Y..

Hence,

SSTI
F, ab E F3 3b) if H is true

and

F -2 b a --- F[3, 3b) if H02 is true

where

H01 -K

vs H II: KI- # 0

i.e.,

H 0 1 3 5 7

vs H1I 1 3 5 7

and

H02 2- -

H K1 2 2
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ie.,

H I2 T2TH 02 T2 4 6 8

V's H 12 T2 > T4>T6>T8

If •. is identical for each block, i.e., j- , where $ has the

form in (30), a single degree of freedom test can be made on the remaining

degree of freedom in the above example. Notice that

t - (q1-l - (q 2 -1) 1 , as q+q 2  t

so there always r xins one degree of freedom untested using the t in

(30). A general contrast to use in this test is

1 [i, -1, 1, -1, *.. , 1, -11 if t is even

t- i,.-. i t is odd

and the hypothesis becomes

H01 -_-T 0

Vs H11 -17 0

The test statistic to use has been given in (29) and is relatively easy

to compute- For the example where t 8, this hypothesis would become

D3 '5 4 6 8

1i 1 3 5 7 2 4 6 8

en, - ,there exists three tests which together test for

P f.'ect-s -f the t-, indcendent . .tmrnt cLontrasts. And, with the

m.e: in (32 , it i.z alwavs POssiile usinf this method to find two
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test statistics which will test the significance of t-2 of the t-1

independent contrasts. However, these tests, although exact, are do-

pendent and a joint test of significance using then is not known.

The value of this chapter consists in the derivation of an exact

test for testing sets of treatment contrasts when the variance-covariance

matrix has the form given in (3) or a form that can be transformed to

that of (3). Although randomization of tiiatments to plots is rttricted,

no approximations are necessary and this is an advantage. The tests, in

general, are dependent. Thus, no joint test is available and, at times,

some degrees of freedom are analyzed individually causing the power of

each test to be diminished. But in qit-aons where M has many pairs

of positive-negative roots that are identical, as in the given example,

or when M is singular and of small rank, the method of this chapter is

extremely valuable. Of special interest is the analysis given in the

above exanple as the covariance matrix of (30) is one that furnishes a

good approximation to many real-life problems.



CHAPTER III

IME D-METHOD

In the previous chaptel a class of randomized block designs was

analyzed where the model was given by

Y. (• ÷ .; + . , j = 1, A, b (1)

"J- 
-+

aj.d it was assumed 'chat

N , .W inde-Žendentlv, j , , b

wit" the restriction that T could be written as

(2
].= .• (t -* qj.M) (2)

2
where : and are umknown constants while M is a known matrix. An exact

method for r--sting the signfýcence of certain sets of treatment contrasts

was devised that re uffrtd the construction of a -matrix, C, possessing

certain c'2s-Ired Fro•,ert'..s. And in tt2 s avrroach, M could be either

singu.~lar -r non-t lnquIar. In t'aftlcuar.....f was singular and also of

s-.,A I r1nk1 cZ7 n:rist,1 , :Ž t±h* lartnt ;'f'#tort orthc-gonial to M and the

~cto~ trs~'.~~ r:.;~d~vP~ ~rec~1velatent root's of M, if

t ~ V-v -a n;.~:i- rs jt' ttom-ts to .,ve an. Alt

nat I, w.h.ere t•.e ra.nk of M is

," --. .- . . . - -, ,, --. .. . .. . to testin: one
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tests. And its test statistics are much easier to compute than those for

the C method. It is noted that in this corrext, may be of the form

a 2 2[ + M(pj

where the latent roots of M are functions of the unknown pj, but the

latent vectors are known constants.

Aa before, ireak down M in' an additive decomposition, i.e.,

r
M - • (3)

i-i

where is a non-zero latent root and a. is the corresponding orthonormal

vector of M, with r being the rank ot M. If one of the cxi, say cr' 11, 1,

then the remaining a. are a set of orthcnormal vectors orthogonal to 1

So let

-3I -i3i

S = 1(4)
-r

If none of the i are 1, adjuitst the -a so t:•t they are orthogonal to 1,
-3. - -

i.e., let

1*
x. - (I - - l)

-1 t t --

-l- - i_ , i = i: , r

where

Sý t - ae

No adJc~t th.e x~ •- t:hat they are crthocnural co -jne another, i.e., let
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X

h

-2 12-1 -2

U*= l2X + hx

h*_ =lXl + h rx, + ... + xr (5)
-r lr-il 2.4' + -r

where the h.. are found by solving equations of the formi

aU.* = 0 , i # j, ij 1, "-" , r-i -1.

Finally, orthonormralize The D* so that-1

<*. •* 1 , i = i, ° ' , r
-j- --1

Then the ct a:e a set of orthonorma. vectors orthogonal to 1 Construct

the matrix

in
M* = t' (6)

--1--1

where

r if no:. 1
-i=-(7)

r-i , if one a., ;ay t , is !
-i --

so that M* is .dempof"'-t and M*I = 0

Consider now the matrix

D I - 11' - M*(8)
D It t-

Then

• = i -, ii: - .* ( t - - ].' - Mi')

t t -- t t--

1 2 2 2M I Ii'
(1 - -- 11') + (W*) - 2M*(l - - 11')

c C- -- t t--

2: ias (M*) = M4", M*I = 0
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implying that D is idempotent. The rank of :1 give.,i

d = tr(D)

= tr(It - -M*

= t - 1 - tr(M*)

It-l-r if no ct. = 1e-1 - (9)
•t-r , if one ai. = J

Also,

1
Dl = ( -I !1' - M*)1

- t t-

= 0 , :s �?* = 0 (10)

and

Dt .D a 2D(I + pXM)D
t J

2(D + DMD)

- a2 [D + p (M - I 1IvM - M*M) D] (1!)

Note that

where

a* a*, c 1*0 * 1

=-1 -2'-

so that

Lat B, (re+1) × (m+l), be an orthogoral transformation s,-., that

( t = C, a)
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whe rc.

f% 1 I-l •-2' "'" m

aiid a is some constant vector such that

'a a0

Then

M* + -11 it 11 * e, ill' , as BB' I

b n a) (a, a)'

A 4 aa'

Therefore,

1M* = '.y" +_aa' --1i'

•nd

M*M. = + aa'M - -- 1-I'M

But

M a C"i ag \. )c
1

so that

-> diag(,XjcU

--. diat X.)v•' , as a'cf = I]. t

aro i,
anti

aa',, aa' diag( A)ct
as .. . =
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Hence,

1
M*M =M -- 1'

=(I - 1 )1-( " F1')M

so that

(I - - 1')M - M*1.4

and (11) become

D = 2D . (12)

Consider transforming y. to DY. = Z. so that
-, "-J -]

Z. = DY. = DT + Dr. , j = 1, ... , b by (10)-J -J - -J

with

E(Z.) = DT

and

V(Z.) Dt.D

2
a oD , by (12)

S~nce Y. are i.i.d. normal variates, follows that

Z. • Nt(DT, a 2 D), independently , j = 1, • b

and b1
1 b ýZj ' Nt(DT, b (123)

j=31

This leads to the quadratic form
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SS20 = bZ'DZ0 -*a -.

b

=bY-'DrLW y=-b'.Dr-{. ' -. b ~j

= bý'DY , as D2  D

m

= SST- I SST k (14)
k=l

where SST is the usual sum of squares of treatments in the model of (1),

i.e.,

t
SS- - = 2
SST =b (Yj. -Y.

pil

with
b b t

Y. ., Y and Y -Y..
b Y. . bt Il i 1j= = 1 i=l 1 ]

and

•-sT = b ('*)2

SST 0 .

From (13) it follows that ---- is distributed as a chi-square since
2

D is idempotent, i.e.,

SSTo 0 d2 X (A) (15)

wh e re

d = tr(D)

(t-1-r ,i f no et. = 1
= from (9)

t-r if one 1. = 1
-an

and
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U

2.0

b

2

2 2

Since -.i T~,D. is aý.L. i on- ý t, Jir, s. 2 d i t 11l be

shown !.OI,1 Lh~t tliC it t y;ltai~stic foi te.cv irq thc hypothesis

But tfhi - is, cr'ui vjl(-nt rc. t.A'.. hyjx(tlh(Ž~i~s

(9 ( i6)

which can be written a--

wherv *., I, 1.ý ii L1;11-~ LJ<S k)f ALL~.:

-L) (1 7
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whe re

SST = Y'Qt (A)Y , using (Al)

with

A R~ D

and

Y_ (Y, ... , Y')

and

SSE0 = Y'Q(A)Y , using (A2) (18)

i.e.,
m

SSE0 = SSE - I SSEk (19)
k=1

where SSE is the usual suma of squares of error in the model of (1), i.e.,

b t 2SSE I I (Yij - Y. - • + Y.)2

j=l i=1 " j 1.

and

b- 2
ss~k= [ [c-j - _.' -_k

k j=lk

Recall that it was assumed in (1) that

Y Nbt[E(y), 1] , (E= diag(EE)

SSEo0 1so S is distributed as a chi-square if -2 Q(A)E is idempotent. But

a C

this follows from (A4) and (12) and

SSE0 2

2 ee

where
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e =tr -' Q(A)

1 (b-l)b tr(Aý.) , from (A6)
2..

= (b-l)tr(D) , from (12)

(b-l)d , from (9)

and

xe 0, from (A7)

since

E(Y.)D = T'D = constant , for all j
-j

The re fore,

SSE0 2

2 A (b-l)d(0) (20)

and from (15)

SSTo 2
S X, 0) , if H0 of (0.6) is true

Further, SST 0 and SSE 0 are independent since

Qt(A)EQ(A) = • , using (A3) and (12)

Therefore, the ratio of SST0 to SSE0 divided by their respective degrees

of freedom yields

SST 0
FS (h-i) - F , if H0 is true (21)

F0 H SSE 0  [d, (b-l) 0]

An 0cabetsdbyeauin
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m
SST0 =SST- SSTk

k=1l

and

m
SSE0 SSE - I SSE

kl kk=1

Since d should be close to t-1 there will remain only a few contrasts

in the T's that are not included in (16). If $. is identical from block

to block, i.e., or p or = r) , for all j, it will be , :sib]• to

test for the significance of these contrasts. Consider hypotheses of the

form

N 2'T = 0 , k = 1, m, m (22)
Ok k-k

and recall that the _* are orthonormal vector. with
-k

j•l'i = -, . . ,m*•*'D = *, (I*

k -k - - )

0' , as c =*'M x*k (23)

Then

N.ID. w',

-k -i " - -k

so that

kk -k b

whe re

'K -k -k
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- 1 2I2
n It is well known that if xa N(i, , then 2- Xl-- ad

22 
2

1 -2 2 , independently. Thus,
2 x x n-l

SSTk
k 2

where

SST b(Y-c)'_ , from (14)
kk

Y'Qt (Ak)Y ,using (Al)

with

and

b 2
A = T'*k Z72 k

Also,

b

SSEk r flY. - Y.), , from (19)

j=
~Y'Q(Ak)Y

Then the test statistic for testing (22) be7omes

S STk
F = (b-1) F , if H is true (24)Fk (bl SEk (l,b-l1' Hok

k

Hence, tests of single ortiogonal contrasts are possible. And each of

these tests are independent of the statistic given in (21).

Note that SST0 and SSE are independent as

t , for all k
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using (A3) and the fact -hat.

K -k -k

for all k, from (12) and (z3) (25)

Also, SbT and -;.E 3 are independent since

V (A ) Q(A) = , for all k

using (A3) and t-h- refuit- that

,, (A!< ' - , from above

I:jrther, .• ýi "::Fd 1 are independent since

'A) (, , using (A9) and (25)

.in.- , •-- ,ndeper. t .-ince

-'. uinq (A 1;, and (23d

and art,3 independent. However, the F are

'V A.,'� i- '" * " k , is not necessarily zero. The

re,'uit -t• t; in addition to the independunt test

zo it-I to cý-Žilin-c w1-1-- any of

A- : ,, tc:, ; 't hv'othesis. And this
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'-ne simple Irethod of testing Hh would be to test H0 of (16) at a signifi-

cance level of

-0 = Pr{F 0  F Fd,(b-l)ld] 0

which is the probability of rejecting i0 when HI is true, and test H
0 0 01

of (22) at a signifiCanc-, level of

- (,F F jI, = 1r - F(l,b-l] l'Ol -

Then reject ii' if cither f0 or H1 is rejected, and do not reject H' if
01 0

"roth ;10 and H arc not rejCcted. S.ince F and F are indepen&nt

P r} FPr- <F

Pr{F 0  - d,( d , I [,b- j r 0  i. d, (b-i1) ;1 - I,b-I)

= (1 - ,0 (1 - )
01

and-, -i.I be t-n sicrniticance levci th-i ttst. Note h -ever, that

Eor Ji',i h•x, ,xit zt-u in i zite r e r choices for :t and

0.~ t'- is s1 ~adiv na" -4 .2ISa I Ac rorrI r. z rig and F.nlc

e~ter >f h,'[:•i 2:a. •: iit-'t;. ?h • •c wa_ Žev..'•,ed ny Z•,ler and

I.:
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which is the probability of the F-ratio exceeuin5 the calculated F if

H' is true. Then the critical region for this hypothesis is given by

00 {° <W: o C} (27)

where C is a constant depending on an c-level of significance and . is

a weighting factor (0 < 8 < 1) which weiqhts relative to F1 . When

o = 1, both tests are given equal weight and this is equivalent to the

method of .'isher [1954) For combining independent tests of significance.

In this case the probability ct a Tx'pe I error for the combined test is

A. = Pr~reject H6!H6}

- PrP 0P<

00i i dP 0 d> , given in (27)

since P. is distributed uniform when H' is true. By fixing a it is
J0

possible to solve fct C to find the zritical value of this test.

Since F0 h ,s more degrees of fr.edom '-han F1 it should be weighted

more than FI, i.e., there should be a better choice for 6 than e = 1

In H0 there are d independent contrasts being considered each having the

formd?'T- •.* , where dl = 0, i= 1, , d; and inH there is one--i- 1 -l- 0

contrast, say _*'_r = T*+ " In totality there are t-1 possible contrasts

so the giver, T's span a certain portion of the parameter space of T . It

seems appropriate then to weight the statistics for H0 and H01 in proporzion

to their influence on this space. A good choice for 8 would be

0 =d

so that
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d
W: PO P1 < C 1

and

a ~dP dP0 1

On the average this result will lead to more power in the combined test

if e has beer, chosen correctly and it eliminates having to choose a0 and

al

In summary, when the rank of M is siall a method for testing the

significance of the d contrast:- in the T's as given in (16) was developed.

The derived test is unique and is based on an F-statistic, i.e., the

F-distribution is used. For all other contrasts single degree of freedom

tests exist provided tj = t And these individual tests, although

usually correlated amwng themselves, are all independent of the test

for (16). Each test is exact and easily performed, but a joint statistic

would be difficult to find. In situations where t= , for all j, one

of the single degree of f~2edom tests can be combined with the formulated

tests, and a combined test results. It is then an easy task to analyze

the combined hypothesis at any fixed a-level of significance. This set

and the othor sets of ccntra."'ts formed, span the space of T and have a

total rank of t-.

To better understand the advantages of this method, it will be

helpful to sketch an example. Consider a randomized block experiment

using the model in (1) with a variance-covariance matrix, t, similar to

the dispersion matrix proposed by Williams [1970] for the offspring in

an animal breeding experiment. There is a slight modification in that



"-4

a t+ ax i a)

where X. is a fumction of an unknown p and the a are known vectors of

constants such that t is positive definite. Then

3
M a. a!.

ani by constructing the vectors in (5), M* can be obtained using

mM* -- 2i 9
k=l

where

V , if one ai =1

2 if no = 1

therefore,

m
D 1 = -u!'- 1 1 il

k=l

Compute

m

SST0 = SST - I SSTk from (14)k=l

and

M

SSE0 = SSE SSEk , from (19)
k=l

Then one can test

H0 DT =0
H 0 D- 0 4_

VS H: DI #0
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SS'%

using F (b-1) - as a test statistic. Compare F to a tabled
0 SSE 0

F where[d, (b-i)dl

It-4 ,if no .a 1

(t-3 , of one a. 51

Single degree of freedom tests having the form of (22) can also be

made since tj -, t . Further, instead of using the test above for H0 ,

one can make a conmined test on the hypothesis

.T 0

HA:

which consideLs d+l independent contrasts. The method to use has been

outlined above.

in tiiir chaT "'r a rew criterion has been derived for testing sets of

treatment contrasts for the model in (1) with tlL. rovariance matrix of

(2) where the Yatrix N1 is assumed to be singular and of small Yanj.

Since this method requires only the calculation of the latent vectors

of the non-zero roots of M, it has mudc value in th~e above situations.

It is extremely easy to compute th-i test statistics, as is evident from

the .nor.ulaes in (14) and (19), and single degree of freedom tests require

little additional work. The method of ýIhapter I, however, can also be

used. But this approach requires the derivation of all the latent vectors

and roots of M, and necessitates muc'. more time and effort in obtaining

its test statistics. So the present D-method, due t, its ease and

simplicity, would usually be preferred over the C-method when M has the

above properties.



CHAPTER IV

TWO TESTS FOR EQUALITY OF

TREATMENT MEANS

In Chapter II a randomized block experiment was introduced using

the model

= 01 + + 'i + Ej , j = I, "" b (1)

where

j Nt(0, j(), independently, J = i, " ,b (2)

and tj could be transformed to the special form

= 2(It + Pj M) 
(3)

Consiuer now the case where pj o p, for all j, so that j , for all J.

Of interest is the hypothesis

H0? i = 0 , i = , . t

vs H : at least one T 0 (4)

which is equivalent to the hypothesis

HO: H'T 0

vs H: HIT 0

where H is a t x (t-1) matrix satisfying

56
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1
HH' QI ( 5)t t--

H'H It-1 (6)

and

, 1= 0

This chapter derives an exact as well as an approximate test statistic

for testing this hypothesis. If p is known the exact test should be made;

and if p is unknown, either test can be made provided there exists an

estimate for p. In either case one can analyze the effects of all the

treatment contrasts.

Consider now the derivation of the exact test statistic. Since

the Y are i.i.d. normal variates it follows that

1'Y N( ' , $ .'P (7)

Let

2- HY
SST* SST*bY'H(H'tH)8

Then --- * is a chi-square variate if (H'tH)(H'$H)" is idexuotent. This
2

a
holds since

[IH'tH)(H'tH) -1]2 1 (H'tH)(H'$H)'

Therefore,

al
ST_•2% X~t(* (0)

with

t* tr{(HtH) (H'tR)-I

,t-l (10)



and

b

Notice that (H'tH)- can be written a3

(Hi Y-i

4here W. is a Latýýnt root (positive) and y, is the corros~cad 'i 1cae:t

vector of ('. ' Hence,

I. --.

ýs t * 0 (ii)

is equivalent to the hyootnejis

H0: H' ' 0 1 1 , t-I

vs HF at least o'e O!jC \'•, 0

-tt tne WH' are linear corm.ntLons ot the rows of I.' md are mutuallv"-1

"-crthooona! since

I - ~as !'
are -- r hogonal

- - , i- , •._' are orthogonal
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So this hypothesis is equiva'ent to the one in (4), i.e.,

H0 : H'T =0 , or, Ti- 0, for all i

vs H 1 H': H 0 , or, at least one T i 0

It will be shown below that there exists a test statistic for testing

this hypothesis.

Using Appendix A, let

A - 1i(H't H) -IH2

so th-r

SST* = Y'Qt(A)Y , using (Al)

and let

SSE* = Y'Q(A)Y , using (A2)

Recall that it was assumed that

N bt CE(Y), Z ' I E diag(P)

Then L is Uistributed as a chi-square if -L Q(A)E is idevepotent. Now,
02 CF0

A4A a a2 H(H'tHr'1H'tH(H'tH) -1r 2

2
-a A (12)

and this result with that of (A4) implies that

- QIA)E 1 Q(A)E

Hen~ce,

SSE* 2

~ ~ ~~~0 . . .0.. . . . - m m m m n n m • m
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where

e = tr CIAk

2

= - (b-I)tr(4) , from (A6)C12

= I (b-l)tr[(,' H) - 1 (HtR)02 ] 1 by cy:. ic permutation02

W b-l) (t-1)

and

X- 0 , from (A7)
e

since

ý'!A - T'H(H'H)-1 H' , for all j

There fore,

SSE* 2
2• ' X(b-I) (t-l) (13)

SST* 2

and from (9) -S-S 2(t-l)(0) , if H0 of (4) is true. Further, SST* and

SSE* are independent since (A3) and (12) imply that Q t(A)EQ(A) = .

Therefore, SSE* and SST* are independent chi-squares and their rz'io

divided by thui respjctivt. degrt e3 -If freedo;h IA

1=(b-i) + F[(t -l) (t -l)! ' if it of (4) is trai . 14)

In order to evaluate (H'tH)-I consider the orthogonal mat-ix, i,*,

t , whe re H
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m It] diaq(xi) (17)

so that

2 (l, " diag1 '-7)

Therefore,

1 1 [(] I-

mil 14 diag1 /x~ *i at diag(/j,

- diag(AX) , as a i j , 0 ' j

and

'2 142 - I+ p d 1ag(Xi)I

-1
- diag(i + PA i

The r

M2(I + PM'M)M'K (ci' "'" , diagfo (I 1i

!-t

t

i-ii-i -i



iwith

i 1 + A

tt

""2 t - t

... LZ'

The re fore,

io 2.2

2-1

t*It

S t X H*' a. q! H* from (16)S1 -1 -2

1- t t

t - Xt~*A a1)2

t1WiH Hei -0• l!•iH•

Equatng (1) and(20)(ield

2 02
O~~~ (H 'H) =(0
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so that

t ~~ t != !%_•

Qtt -- pý (I(l.c

1

Therefore,

SST* 0 ~2bui 'H H'tH) 13H'i

1 2 __ _it

- (QJ- - [ 1
- (:QQt -Pt Al 2

21

SST -pSST 1  SST2 (21)
SS2

Swhere SST is the usual sum of squa-es treatment in a randomided block

experiment, i.a.,

t
qST b - (YW -YO.)

t

SS ,ss2 -b t
t - P .,%:

Further, recall



J--2

- cY y .X*((Y i f.]-

r. tt

!I ( 2)

L~ t 2

L. L. Y..- - + y

S~L 1 Y V - Y ~ I(24)

I- -1 -3 -

t-p A,(12a

Using (21) (2~'.j2$ wit'A (14) it w,,uld now ne pc~sqih1(- to test :he

hyy'othesis of (4) provided o is K-narn o,. can be estimated. H~owever, the

a~pidst-atisti.,:,-c ziuzy desi~re xin e~i2 -.pprcd,--A :o this pro..k.n ta

aitlý uA.i not ex~,can still be i~seci with a high degree of success;. It

JS .Aural th(4i W. turn to an app roxi. ate F-statistic. Y11 this mpet-nod

-royn (22) zan,1.. fror-)i (14) a~re' isel tzo form the oai al. F-rat~i Ar~

r
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formulass are then neoessary to obtain the adjusted degrees of freedon.

The following method is generally referred to as a "Satterthwaite

method" through reference to the work of Satterthwaite 11946). Consider

any quadratic form, say SSC, and let

nSSC
U n E(ssC)

with
22Z (SSC)

V(SSC)

Then

"3(u) n

and

V(u) -2 V(Ssl:)
E (SSC)

4E 4 (sscl V(SSC)

V (SSC) E2 (SSC)

2n

Then u hak the same first two moments as a chi-square distribution with

n esegrees of freedom so th-it, approximately,

u 2~
Xn

This method can now be applied to SST of (22) and SSE of (24) and

the results will be similar to thobe of Box [1 95 4b]. The sao" approximate

F-test will be derived. So, us•nq SST above, let

2E 2 (SST)v ISST)

S(t-l)e , in Box's notation,
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Whc• rr¢

2T• (ST) (25)

Then

(t--I)cS T 2 (26)

Recall f.h:: wtn tiO - .jiv,:n in (5), SST can be written as

where

t, b

and
+ b

[- - -' * •* = + •"j=l8

j=1

Also,

= (* _I + ) - b*! _2')

e-i .' , o. =(27)

Therl

-S q L t•t , '.L ' - ' "

- T from (27)

t 1'1 , if R0 of (ii) is true (28)•"(:) - _ _0
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Further,

V(SST) - 2tr(Q,•Q, ) + 4-lQjQ

-2tr lt _ 11,04- i1 ,$ l u'u'] + 4'l' -i (7
2 tt• - - t =5 _n . . ..

- $ 2tr1"2 + 1 (le I 1'1t + 2- +ltlý 4"T'
t t2

-2tr(2) _ l't2l + 2 (1. i)2 +

= 2 tr(42) _ 2. lq21 + _Lj (1, ti) 2) if H0 of (4) is true .(29)

Substituting (28) and (29) in (25) yields

(tr(t) - " 1-

C 2+1 2' ifHof (4) is•tru . (30)
(t-l)itr(t 2 ) - + _ (- 0

t

Now it is well known in Analysis of Variance that SSE can be

expressed as

SSE - Y'Q(A)Y , using (A2) of the Appendix

where

A-Qt tI -

Also,

' t(E(cY_'I , .diag()

so that

E(SSE) - tr[Q(A)Z] + E(Y.')Q(A)E(Y)

- (b-l)tr(Q t) + 3(Y')Q(A)E(Y) , from (A6)
t

-(b-l)tr(Q t) ,from (A.7)
t
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a~iace

E (Y;) A P )1 + j) ]( - 1; 11')

- ~i+ + '0 (ii + IT ( 3

' for all j (31)

There fore,

E(SSE) - (b-I)E(SST) , if H0 of (4) is true

Further,

V(SSE) - 2tr[Q(A)EQ(A)E] + 4E(Y')Q(A)EQ(A)E(Y')

= 2tr[Q(A)EQtA)E] , from (A7) and (31)

- (b-1)2tr(A4) , from (A8)

= (b-I)V(SST) , if H0 of (4) is true

So let

2E2 (SSE)
n 2 =V(SSE)

2 (b-l) •-> z;ST)

(b-i) V(SST)

- (b-i)(t-l)c , using (25)

Hence,
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n n2SSE

-2 E (SSE)

S(b-i) (t-l)SSE
(b-i) E(SST)

(t-1)E SSE
E.•SST)

and

.2
u2  X X (b-i) (t-)e (32)

Now

SST - Y'Qt(A)Y , using (Al)

and

SSE - Y'Q(A)Y , using (A2)

where
1

A Qt- R,_zz

Then

A jA-QttQt ' forallj

so this result and (A3) ivply that

Qt(A)EQ(A)

and SST and SSE are independent. It then follows from (26) and (32) that

U 1u11/U
F - (t-1)c / (b-1) (t-l)D

,. - (b-i) (ST) / (STS)

!. ~- (b-i) S_
SSE

F[(t-l)c,(b-,t-l) ' if H0 of (4) is true . (33)
* ((-),bl)tic
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If (t-1) c, where c is given in (30), is not an integer, inte.polate in

the F-table to find the critical point. Note that equation (30) and

(33) are the same as Box's equation (4.4).

Recall now the example presented in Chapter II using the model of

(1) with a variance-covariance matrix

"I OS: -3.2. (34)

P

Of interest is the hypothesis given in (4) on the significance of the

t-i independent contrasts in the T's. The first approach will be the

exact one using the statistic given in (14). To compute SST* ;f (21)

and SSE* of (23) it will be necessary to have values for X of (18),

qll , and Q where A. and a. are given in equations (33) and (34) of1- -ti 1 -1

Chapter iI. The values for these are given in Table i for t - 2, --- , 6

and t - 8

Hence, fix d a vaiue for iD or compute an estimate of it. Then, to

obtain SST*, calculate V and use the tables with the formula given in

(21). To find !-SE* comiritee Y. - Y. for each j and use the tables with

the equation in . Finally calculate

SST*
F* (b-1)

SSE*

and compare this with a tabled Fti(b-i)(t-i)] at some a-level of

significance.

I+

_______________________________



73

Table I--continued

t-5

imi 1-2 1i3 1i4 1-5

S1-25 5t -/ 8 5/ F 1+2,"Y-

4+3/i [5V - -2 5 3 7 -4-3113
6-2/i 0 -12 0 6+2/3- divisor z lor

-L+3/-3 L:• 3 - 2 5 r3 -43V-3
1-5 5V3 8 - 3j 1+ 2 05

3 1-0 -3

+120 1 0 /13+_•i .2_• . ____-1+--,

t 6

Jul i-2 1-3 1-4 i.5 i_6

Qt -21 Qt -22 9Qt -3 Qt -24 Qt S/5 Qt 2

-. 88900 2.34564i 2.2978a1 - 2.92488 2.10460 1.30176
.15488 2.92488 0.67476 -1.30176 1-3.16572 -2.34564.734121 1.301761 -2.97264 -2. 34564 .002 2.92488

.734121 -1.30176 J-2.97264 [2.34ý64 1 1.06092 -2.924881

.154881 -2.92488 0,67476 1.30175 -3.16572 2.34564
L- .L89'9!J -2.34564 L 2.29788 -2.92488 2. 10480 -. 30176j

1.80180 1.24684 0.44480 -0.44480 -1.24684 -1.80180
I 1+.-080P 1+1.24684c 1+0.44480o 1-0.44480c 1-1.2 4 6 8 4 P 1-1.30180p

2_I 2.34191 0.0 0.67026 0.0 0.2576 0.0

divisor - l.50306
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!•i•i--continue~d

i=1 i=2 it3 i-4

Qt -1 Qt 22 Qt ý3 Qt 2 4

F-o.172954 0.0303141 0o. o 6 18 C F0o.642431
i-0.0 31170 0.46,-2431 F030,,186; 0.1612291
J0.074064j 0.4182481 0.2621 -0*.4082481
0.1.0060 0.1612291 -0.51031" -0.303014.
0.1.0060 1-0.1612291 -0.510410, 0.3030Q14!
,.C74064 -0.408249! -0. 102lo2 0o.108248L2.0311701 0. 1 4i.10306", "4.3 122

42431-i 0443L-o.172954i -0.3030141 ,.3C6.L. 3 -. ,,243j

1.87938 1.53206 3

1+1.6793, 1+i.,33,0 SQ

o.•I 2.67:d,70.0 A,)ŽL,6C O' 0

i=5i

0.414798 0.4082468: 0. 2T1- , C 1.9
-0.213674 -0.408248. -0.4bU9.) . 303014
0.4576921 0C 0. 38
0.2535391 0.408248' -0.12 .. 4,--
0.253569T -0 .4 4 - 1824 , 4 4-A43:

-0. 45769 i 0 38 ' 4 (11.40824 e
-0.2106741 O. 0: F24 S J. -18 0.30 3•214,

L 0.414798 -0. 408 48' 7 C,. .6i2.2'

-0.34730 h
ji 1-3J343]0; '

a.' i 0.3955...

dvisor ,•I
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I-1I *7-I .'er, tIc Obtain 2v . . :.UA-Y;~~~
.-- •. .:.5

/-'

Z C .t-i)

Th,: re. Fore,

* .-

S.0.,

Also,

t2 1 2

tr( ) = " t : - ,: - ! "

"r2(t. [i
=13It - * - .•
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and

1.21 '4(2(1+P2 + (t-2) (1+2P)2]

=a It + 4P (t-1) + 2P 2tM-3) I

Therefore,

tr# 2 , - t. + t .2 - (22
t- t2

+ 0 2 t-) + 4P (t_-1) + ýrp 2 (2t-3) + N~~ _ ut1)1 2 j

I4 (t-1) (t-2 _)2 + j-(t+l)(t-2)2

S 2 (t-1) (t-2p) 21

Hence,

in -5)wt a taldF(t-l)2/4(t.1) (t-1)Q at 2om 2-e• of+1 sit nficn

(t-2p 11 )

ta•i (t-l)• snta nee hno mut 2nepltei h

(t2p

r t t2
4%:2p tl)(t2) 4f- t2-1+2p2(tlt2

L (t-1) (t2p Jtl(-p

which is equation (6t.0) in Box's notation. NoT compare the F-statistic

in (35) with a tabled Fr(ti )Es b1) (t-1u I at Bor c-level of signtficance.

of course, the value of P or an eqtimate of p will be needed- to compute

E, ane- if (t-l)e is not an integer then oný must interpolate in the

F tables.

En sunaaiy, there has b'aen derived both an exact and approximate

zrthod for testing the hypothesis of (4). The exact test tatwistic is

given izn. (41 znd re4uires mtuch timue and labor rnless tables of latent



roots Wn vctort of M -at* aVa.'LaUbi.. The 'ePprozimate test statistic is

givcn JA (33) and is the uaeiaal F-statist~ic of a MD where the errd.Z11X ar

nozia3 ly And indepenftatly distz'ibutA44 so it is relatively easy to

ccopute., RoIwver, it- may be necessary t~o inteqpolate in the F table t'l

find the apprv~rate crit4.cal point- in testing H0  In each of the abo)ve

Cos." amG 3ut either know~ the value 4p or be able to find an estimate

* of it. 'Which isýw L best will .4apeadton this estimate. The next

ct-pter will di.scuss in detailI a Nonte..Carlo study comparing these tests

N%haen -me s~itc estimate of p ir t=6d.
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CHAPI'ER V

AM(OTE (CMRO 'STUDY

In order to coupare the two test statlstics given in equations U14)

and (33) of Chapter iV it is necessary to find an estimate of p, say p

This will now be done for the example given in the last chapters using

the variance-covariance mat-rix

• 0

A Monte Carlo stud-, is iiade conparing ,i erext known significant.c levels,

v., with the significanr'e levels using the 'exact' ter! cLatietic ).fn

equation (14) above, i.e.,

SST *
F('exact') (b-i) S rT* F if H is true (2)

SSE* ((t-l) (b-l) (t-l)] 0

the ap" oximate test statistic in equation (33) above-, i.e.,

SST
F(approx.) = (b-i) SS Ff H '

and the usual F-statistic which can be computed using equition (33) aove,

i.e.,

78
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F(Usual) - (b-flFs__b FF i" H0 is true . (4#

The term 'exact' will be usei to designate the exact test of the last

1 -tpter when an estimate for p is used; thii, of course, will not be an

exact test of significance but will be referred to as the 'exact' test

in order to keep in mind its structure. Notice that the only difference

between the usual statistic and the approximate statistic is the degrees

of freedom used when finding the critical region. The results of the

study prove to be helpful in determining which of the above statistics

is approprinte when the i 4n (1) is used.

In the example of Chapter IV i. was shown in equation (36) that

E(SE)- (b-)EST) , if h0 is true

2 (b-1) (t-1) , if H, is true

so th"".

t [li 1 E(SSE} )5
sP 2 ½ (b-l) (t-l) (S)

No7 if E(SSE) is replaced by

b t 2ss.E=~~ ~ ~ ; ' - -- o+ Y'-
SSE~ j [Y -Y yi .jj-l i,,i

2
in equation (W) the result is an unbiased e!stimator of P when 2 is kjxown,

i.e.,

t . SSE- 2
T ... ... , A 1•krown (6)

2 d2 (b-1) _-l)

with

E(p) -p
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2If a is unknown it can be eatirated using the C method derived in

Chapter II. In equation (43) of that section

b q,
b 1 -(11 -(i) 2

SSE, - - ,'
1i 2i-1,j 2i-l, j +
j1i ill

where

SSE 1  2
0-•2 "X (b-l) (q 1-1)

so that
2

E(SSEI) - (b-i) (q,-i) a j7)
1

Also, from equation (44) of that section

b q2s q --(2) +.-(2) 2
2S = 2 [Y2 i,j - 2i,. .j .

where

SSE 2  2

---T ) X(b- (q 2
so that

E1SSE2 (b-1)(q 2 -1}2 (8)

Combining (7) and (8) yields

E(SSE! + SSE ) = l (q l + q 2)0 2

2

= U as ql + g2•t

Heace

ý3Ur SSE

'ýb-l) (t-D)

2is an unbiased estinator for i3 An easier method. for obtairirg
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SSE + SSE 2 would be to first calculate SSE and then subtract off SSE3

where

b
SSE 3 , (w -w. 2  (9)

ii

with

1 b
b wjbJ1

and

2* (t1) j "(2))

so that

SSSE.- SSE1

A (b-I) (t-2) (10)

Substituting the above estimate in (6) yields

t~ (2)S SSEE] 2 ''m(1; ~ tl a• unksn sFJ ' ,own (11)

Notice that when a" is known; P is an unbiased estimator of p, but when

2 2a is =known this is not true. -Imever, in (11) a ia replaced by the

unbiased eatimator in (10). It is also relatively easy to compute P of

(6) and (ii). k ý:ause of these two points, i.e., pseudo-unbiasdneess and

epse of ccmputation, this estimate of P wa. used in the Monte Carlo study

given below Other es-uimates of c ao--ild be devited but none ame as

g,ýple to compute as this oe.

ConriMr now gner~ting a random *amp- frtc a multivariate normal

pv3ulAtiun havir; mean 0 an6 the vii)ria~ne-covariance matrix given in (1),
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where P and 02 are specified. Using this sample it would then be easy

to c,3jtjtf1 the 0 of (11), assumdng a2 is unknown, and the test statistics

in (2), (3) and (4), assuming p is unknown. Comparisons could be drawn

between the real value for 0 and the estimated values using p . Also,

one could compare the three statistics above to see which appears to be

met correct when p is used. This has been done in a series of experi-

ments using a UNIVAC 1108 computer where t-3 and b-3, 51 t-5 and b-3, 5, 7;

t-8 and b-3, 5, 8, with a = 1, and P - 0.45, 0.22, 0.0, -0.22, -0.45

Each experiment was run 1500 times, varying t, b, and p and using

different samples for each replication. In each replication, 0 of (11)

was corputed and the resulting value was used to c¢alculate the test

stat.'stics in (2), (3) and (4). If the value of p ever exceeded the
-i

limits on p as given in equation (32) of Chapter II, i.e.,{2 oos( W )1

then this end value was used instead of p • This resulted in a partially

biased estimate of p but a more correct one. Counts were then made

of the number of times a certain test statistic fell in the critical

region using three different significance levels, a - .10, .05, .025

Table II below lists theie cotmts in terms of probabilities.

A large number of values for of (11) were also printed out.

These indicated that this estimator was fair in that region where P wa3

positive; but with a negative Q, P performed poorly. Consequently, as

the tables indicate, the test statistic, F('exact'), is not good when

P is used. A better estimate of P, however, might improve this test

greatly. Surprisingly, F(usual) was relatively accurate, even when IPI

varied from zero. The statistic that was most consistent over the values

for p, t, and b was F(approx.) which turned out to be somewhat conserva-

tive. Another estimate of p might also improvs this test.
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It is suggested then that when has the L-u of (1) and P 4.s known,

one shoud use 'etact') of Chapter IV to test K0 * When 0 is known,

estimate p using (6) if a 2is known ad (11) if a2 is unknown. Then to test

HO, evaluate F(approx.) of (3) and this P * If one knows that .pI is not

too far frm zero, but the actual value of a is umknown, calculate

F (usual) of (0) and do not even estimate p . Finally, tas another estimate

of p if a be-,cr me is found.



IALPTER VI

SUMMARY

In this paper methods have been proposed for testing the effects

of certain sets of treatmnt contrasts in a randomized block experiment

where the errors are not independently distributed but have, instead, a

variance-covariance matrix of the form

j = a2c(It + pM , j-i,- ,b (1)

These te3tn require neither that the number of blocks exceed the nuvber of

treatments nor the computation of large order inverse matrices, as does

2
Hotelling's T test. In fact, some of them use the usual test ratio

F SST
SSE

Chapter II presents the C-method which transforms the origir-Al design

into one in which the errors are independently distributed. An example on

serial correlation within blocks is examined using this approach. Although I
not xique, the test statistic developed here has an exact distribution,

namely, the F-distribution, and is not too ditficult to derive. Unfortunately,

it is useful in testing only 5ets of treat.mnt contrasts and tict in testing

the equality of all the treatment mans.

in Chapter III the D--ethod is proposed which can be used as an

alternative t_• the C-imuthod when the ramk of N is sm4ll. This section

87
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also analyzes an example in animr1 breeding where this method apvsaru to

be very uteful. The test statistic derived is quite easy to obtain and

tJe nets of treatment contrasts conasdered almost span the paramste_

space of T

Chapter IV gives two methods which can be used in testing all 4-l

independent contrasts. Bota require that pj be identical to p, for all J,

and either that p is known or an estimate of p can be ot•ained. If p is

known, one approach is exact while the other is approximate, if p is

unknown, both axe approximate. The example of Chapter II is studied in

detail and some tables are given which are useful in derivinq the test

statistic of the exact method.

In Chapter V a Monte Carlo study is made on the methods of Chapter IV,

using an easily computed estimate of p snd the example of Chapter II. The

results indicate that the approximate test is quite accurate while the

'exact' nne does not perform well due to the inaccuracy of the estimator

of p . Surprisingly, the F-test used when the errors are indeýendently

distributed perforam quite well for this example.

In ccnclusion, if one is interested in testing the equality of all

the treatment means, use

(1) the exact method of Chapter IV, if p. is identical to P,)

for all j, and p is known;

(2) the approximate method of Chapter IV, if P. is identical

to p, for all j, and P can be estimated;

(3) Hotalling's T2 if b > t; pj is identical to p, for all J;

and the necessary inverse matrix is easier to compute than

(1) or (2) above;
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(4) the D-method of Chapter 1II, if (1), (2), and (3) do not

-hold and the rank of H is small enough. Tr this case Pj

does not have to bd identical from block to block.

If one is satisfied with testing certain sets of treatment contrasts,

use

(1) the C-method of Chapter II, if these sets can be

obtained;

(2) the D-method of Chapter III, if the rank of M is small

and these setF can be derived;

(3) Hotelling's T2 if b > t; pj is identical to p, for all j;

and the inverse matrix is easier to compute than (1) or (2);

(4) the single degree of freedom tests of Chapter II, if pj is

identical to p, for all j, and individual treatment compari-

sons are of interest.



APPENDIX A

SOME RSULTS ON MATRICES

Let A and B be any t x t matrices and let Qt (A) and Q(A) be th x tb

matrices such that

I • I

I I
Q(A) =A (I..I(Al)t b t

and

"(b-1 ) A b-A -A
-A (b-l) A o•• -A.

(A) (A2)

L -A -A ... (b-l)A

Then

FI (b-l)B B.. -

Q t(A ) ZQ ( B) • b
(A B) A I I dag~ti

tt -B .. (b-i)B

"1 "(b-l)B .. -B

2- Aft 1 t 2  tb]
b . I

L ItJ -B * (b-l)B]

90



I-tb b-

I j -l 44r% (b-i) A"~ s

a L't
-*,if -4 B constant, for all j 

(A3)

Also,

L -A -A (b-i) A]

At -4b 1(b-l)A * -

L zl

rb (b-1)A ... -b 1
b2 a 2

-bA $of b(b-l)A - -aA

a2

and
b

b l

-(b-1)tr(At) ,if t t' fo~r all j.(6
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Further,

Sb-i 'y'),E(Y

. (t-b.. 1) _A ---A

-A ... (b-l)A

1 -1)E(Yl)A E 'j A, (b-1)-rfor ;b(8)
2 - J=2 -

0 , if E(Y_•)A - constant,, 'fe- all JAT

and

(b-):1) r "b-l)At .. -Ab

tr[Q(A)Z]2 tr b b

b~ ~ -. 1)AiA b-l)A

IL -At .. • .. )

S•,for all (AS)

Now



"(b-l) A ... . A F (b-1) ".. B

Q (A Q (B) di- g (t

L' t

L -A L, b 1 '[ -B ,. b ? -

""r (b-I B ... .

-Af , if-BB*4 o l

and

I .. L .t] [

tl

2 J-1 •J4B (t~t ••

S€, if P45B " %,for &II J i"
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